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Abstract— Existing multistage clustering methods indepen-
dently learn the salient features from multiple views and then
perform the clustering task. Particularly, multiview clustering
(MVC) has attracted a lot of attention in multiview or
multimodal scenarios. MVC aims at exploring common semantics
and pseudo-labels from multiple views and clustering in
a self-supervised manner. However, limited by noisy data
and inadequate feature learning, such a clustering paradigm
generates overconfident pseudo-labels that misguide the model
to produce inaccurate predictions. Therefore, it is desirable to
have a method that can correct this pseudo-label mistraction in
multistage clustering to avoid bias accumulation. To alleviate
the effect of overconfident pseudo-labels and improve the
generalization ability of the model, this article proposes a
novel multistage deep MVC framework where multiview self-
distillation (DistilMVC) is introduced to distill dark knowledge of
label distribution. Specifically, in the feature subspace at different
hierarchies, we explore the common semantics of multiple
views through contrastive learning and obtain pseudo-labels by
maximizing the mutual information between views. Additionally,
a teacher network is responsible for distilling pseudo-labels into
dark knowledge, supervising the student network and improving
its predictive capabilities to enhance its robustness. Extensive
experiments on real-world multiview datasets show that our
method has better clustering performance than the state-of-the-
art (SOTA) methods.

Index Terms— Hierarchical contrastive learning, multi-
stage clustering, multiview self-distillation, mutual information
between views.

I. INTRODUCTION

TRADITIONAL clustering methods [24], [29], [33], [40],
[41], [49], [51], [60], [76] have been used with specific
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Fig. 1. Overconfident pseudo-labels used in MVC and their distillation.
The multiview data instances are learned to achieve a common representation
of views. However, pseudo-labels obtained from common representation
learning are often overconfident for this multiview scenario. Distillation after
labeling, obtains dark knowledge, a new self-supervised signal that contains
richer semantic information compared to pseudo-labels, can better guide the
multistage clustering and significantly improve the quality of clustering.

machine learning techniques in various tasks. Among them,
clustering algorithms [9], [42], [43], [67] based on deep
learning have emerged due to their powerful generalization
capability and scalability. These algorithms jointly learn the
parameters of some specific neural networks and assign the
features extracted to clusters. Among them, one-stage deep
clustering methods [47], [65], [96] work end-to-end for feature
learning and are easy to lock in low-level features. On the
other hand, the multistage deep clustering method [71], [84]
performs multiple rounds of feature extraction under the super-
vision of the pseudo-labels obtained through self-learning,
where the labels are used to guide the training of a prediction
model for clustering. The overall process of multistage deep
clustering fits exactly into the self-supervised paradigm of
model training guided by the intrinsic structure of data, which
helps to achieve enhanced feature learning and clustering
performance. According to Cover’s [14] theorem, complex
data are more likely to be linearly separable when they are
projected to a high-dimensional representation space, and this
theory provides a base for the feasibility of such pseudo-label-
based training. The pseudo-labels learned are used as a priori
or self-supervised signal to guide the training of clustering
model [67], [75], [79], [83], [83], [84]. Recently, multistage
clustering methods have become a focus of research [67].
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Data in the real world are mostly collected from different
(types of) sensors or feature extractors. Multiview clustering
(MVC), one of the multistage clustering problems, has been
proposed to explore the common semantics among different
views and investigate the effectiveness of pseudo-labeling
for self-supervision [15], [30], [57], [80]. However, MVC
suffers from some drawbacks and constraints when applied to
multimodal or multiviews. As the number of views increases,
each view introduces its unique form of noise, exacerbating
the overall noise in the dataset. If pseudo-labels are directly
extracted from noisy data features and used by the predictor,
it will lead to a low-entropy state in the data representation
and overconfidence [5]. Ultimately, the model is not taken
as a well-calibrated predictor [23]. Furthermore, the pseudo-
labels for cross-entropy penalize all negative predictions
regardless of their logical foundations. Significant features
related to negative prediction are neglected. Thus, it is a
challenge to avoid the damaging impact of false pseudo-
labels during feature learning and correct the inaccurate
bootstrapping [65], [84].

To address this challenge, we first comprehensively study
multistage deep learning methods in computer vision and find
that the use of knowledge distillation (KD) can deplete the
negative impact of pseudo-labels and considerably enhance
model performance in both supervised and unsupervised
settings [2], [8], [34], [37], [64]. In this case, a teacher network
iteratively optimizes the student network by replacing pseudo-
labels with the KD results, i.e., the implicit feature distribution
(dark knowledge [27]), so that the student can comprehen-
sively distinguish similarities and differences among samples
and extract significant features (see Fig. 1). Based on
these observations, we propose a novel multistage MVC
framework based on multiview self-distillation (DistilMVC),
which leverages contrastive learning techniques to optimize
the backbone network of our design (the teacher network
and the student network) and build a bond between the
teacher and the student by a self-distillation process. More
specifically, we leverage contrastive learning to achieve better
representations of unlabeled view data, as well as establish
a feature space for the self-distillation process. This ensures
semantic consistency across views through multiscale mutual
information maximization, even with significant differences
between views. In addition, the dark knowledge learned in
the self-distillation process can align the feature space of the
student network with that updated by the teacher network in
the iterative process and alleviates the overconfidence of the
conventional MVC schemes associated with pseudo-labels.

To summarize:
1) We explore the use of KD in MVC and propose a

multiview self-distillation technology that transforms
overconfident pseudo-labels into dark knowledge, reduc-
ing the impact of false pseudo-labels on multiview
feature learning. As dark knowledge contains essential
hierarchical information that is not included in pseudo-
labels, using it as a supervision indicator can generalize
the multiview representation learning.

2) We propose a contrastive method to learn multiview
semantics in feature spaces from different hierarchies.

In a low-dimensional latent space, we directly maximize
the mutual information with invariant information
clustering (IIC), and in a high-dimensional subspace,
we raise the lower bound of mutual information
according to the fixed point related to the scale
of negative samples. This can accordingly improve
the self-supervised learning multiview representation
performance for MVC.

3) Based on the proposed multiview self-distillation
technology, we introduce a new multistage framework,
which uses dark knowledge instead of pseudo-labels
as a supervision indicator and thus generalize MVC
capability.

4) Experiments on eight real-world image datasets demon-
strate that DistilMVC outperforms the state-of-the-art
(SOTA) clustering performance and can achieve strong
robustness.

To the authors’ best knowledge, DistilMVC1 is the first
method to incorporate KD into self-supervised feature learning
of MVC, providing a novel solution for high-quality MVC
methods. This allows MVC models to be embedded into the
physical world to learn more consistent representation in broad
scenarios in a self-supervised way.

II. RELATED WORK

In this section, we briefly review three lines of related work,
deep MVC, contrastive learning, and KD.

A. Deep MVC

As the mainstream type of enhanced multistage clustering
approaches, MVC has attracted increasingly wide attention
from researchers. Traditional MVC methods [24], [29], [33],
[40], [41], [49], [51], [60], [72], [73], [76], [93] have a number
of limitations, including high complexity, slow speed, and dif-
ficult deployment in real-world scenarios. SimpleMKKM [50]
improves clustering by learning optimal coefficients for
neighborhood mask matrices, simplifying parameter settings,
and achieving global optimization, but ignores the cross-view
semantics. SL-CAUBG [90] replaced single-view anchors with
cross-view consensus anchors and unified bipartite graphs
to improve clustering performance, whereas it increased the
complexity cost. Furthermore, FAMKKM [70] integrates the
basic partition guided by original kernel information to reduce
computational complexity. In recent years, deep learning-
based MVC methods [1], [3], [44], [47], [48], [75], [81],
[82], [84], [87], [88], [89] have received more and more
attention. They exploit the excellent representation ability from
multiview data latent clustering patterns. Such methods can
be roughly divided into two categories, namely, one-stage and
multistage methods. Most of the one-stage methods [47], [65],
[96] are designed to work end-to-end. Synchronizing feature
learning and clustering taken by this kind of method can
effectively reduce the multistage error accumulation and better
support streaming data processing. S3OCNet [42] belongs
to one-stage clustering and thus does not generate pseudo-
labels that can be used in the iterative optimization process,

1The code is available at https://github.com/TitusWjt/DistilMVC.git.
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but rather optimizes the clustering model directly through
backpropagation. Some one-stage methods [63], [69] combine
multiview learning and K -means in one step to minimize
information loss in clustering and improve performance.
However, such methods heavily rely on the quality of feature
initialization and may prematurely lock in low-level features
of different views leading to fall into local optima [67].
The multistage methods [71], [75], [84] follow the self-
supervised learning paradigm, first pretraining for feature
learning and then fine-tuning according to different proxy tasks
or algorithms. One-stage methods are likely to latch onto low-
level features because of their dependence on initialization,
so the multistage method with pretraining usually has a better
performance in providing higher accuracy (ACC).

The proposed DistilMVC is a multistage MVC framework
that requires pretraining to obtain rich prior knowledge, which
avoids relying on low-level features in the clustering learning
process. Almost all MVC methods do not take into account
the inaccurate guidance from the use of pseudo-labels and
thus suffer from model degradation. To address this issue,
we replace pseudo-labels with dark knowledge from the
perspective of KD. Recently, Li et al. [38] used dual attention
layers and dual contrastive learning losses to learn view-
specific prototypes and model view relationships, whereas it
introduces higher computational complexity during iterative
optimization of prototypes and data imputation. OPMC [77]
also requires additional computational steps or methods
for precise matching of structural information between
views. Chen et al. [11] learned features through contrastive
cluster assignments but ignored semantic consistency, facing
challenges related to significant view heterogeneity. On the
contrary, DistilMVC excels in capturing and distinguish-
ing subtle differences in multiview data, showing better
performance with large-scale and complex data. It ensures
semantic consistency across views through multiscale mutual
information maximization, even with significant differences
between views.

B. Contrastive Learning

Contrastive learning [10], [12], [13], [21], [26] is an
essential method for unsupervised learning [6]. Its major
goal is to maximize feature space similarity between positive
samples while reducing the distance between negative samples.
In the field of computer vision, contrastive learning methods
have produced excellent results [67]. For example, SimClR
[12] or MoCo [26] minimize the InfoNCE loss function [55]
to maximize the lower bound of mutual information. Since
the processing of negative samples is very cumbersome, the
follow-up works, such as BYOL [21], SimSiam [13], and
DINO [10], have successfully transformed the contrastive task
into a prediction task without defining negative samples and
achieved amazing results.

Previous work simply constructs positive and negative
samples based on data augmentation. For example, Yan et al.
[85] reduce the impact of false negatives in samples by using
transition probabilities to accurately identify and minimize
the similarity between truly dissimilar sample pairs. Although

these studies have shown that consistency could be learned
by maximizing the mutual information of different views,
they ignore the mutual information at different hierarchies.
In contrast, our method aims to learn shared semantics from
multiple views. DistilMVC first constructs two independent
subspaces and defines positive and negative samples according
to the feature matrix in each subspace, respectively, and then
uses the InfoNCE loss to maximize the lower bound of mutual
information of different views.

C. Knowledge Distillation

KD is a model compression method in which a smaller
student model relies on a pretrained teacher model to obtain
performance close to or even surpassing the teacher model.
In order to help students learn more semantic information,
minimizing the loss of the output class probability (soft label)
of the teacher model [27] can make the soft label contain rich
dark knowledge. Recently, Li et al. [39] proposed a distillation
strategy, adaptive sharpening (ADS), which adaptively filters
high-confidence predictions through a soft threshold to address
the issue of overconfidence. However, ADS must rely on a
small amount of manually labeled data for semi-supervised
learning, limiting its application in MVC.

The differences between this work and existing KD studies
are as follows. DistilMVC adopts a self-distillation [28], [56],
[86], [95] method that does not require a pretrained model of
the teacher network, nor does it need to detach the gradient
of the teacher network. In DistilMVC, the student network
and the teacher network do collaborative training, and the
teacher network relies on the momentum update [26] of the
student network parameters, which is conducive to maintaining
consistent semantic information for high-dimensional features.
The proposed method extracts the dark knowledge from
high-dimensional features, supervises the learning of the
student network, and improves the generalization ability of the
model [53]. To the best of authors’ knowledge, this is the first
work that applies KD to MVC, which optimizes pseudo-labels
quality and improves the clustering performance.

III. REVISITING KD USED IN MULTISTAGE
LEARNING TASKS

A multistage deep learning task [46], [67], including
multistage MVC [54], [71], [84], leverages K -means and
other basic clustering methods [2] to convert high-dimensional
features into pseudo-labels to guide learning tasks. However,
the distance measures in high-dimensional spaces are not
reliable due to dimensional catastrophes, imbalanced data
distribution, and noise pollution [22], [62], [68], leading to the
overconfidence in K -means or other basic clustering methods
and thus the biased pseudo-labeling. As the noise accumulates,
the obtained pseudo-labels [56], [83] lose intracluster and
intercluster associations, degrading the model prediction
performance (low-entropy prediction).

Inspired by the fact that KD is feasible to tackle low-entropy
prediction problems [56], [92], we explore the use of KD in
multistage learning tasks. More specifically, we perform five
experiments, three of which are supervised tasks and two are
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Fig. 2. Comparison of learning performance of visual tasks with or
without distillation. In this figure, we display the performance improvements
of different feature extractors with an additional distillation process.
The performance improves in the cases of using the convolution-based
ResNet [25], the self-attention-based ViT [16], the object detection network
RetinaNet [46], the convolutional neural network (CNN)-based deep clustering
[9], and the unsupervised domain adaptation [20].

unsupervised tasks, and incorporate a KD method into each
task. The specific experimental settings are shown in Table I.
The corresponding distillation methods are as follows.

1) FT [34] uses convolutional operations to transfer dark
knowledge.

2) DeiT [64] proposes the distillation token and uses its
representation with the teacher model’s dark knowledge
to compute the distillation loss.

3) KD-RP [37] exploits the differences in student and
teacher networks to guide dark KD.

4) KD [2] provides additional information about semantic
similarity to model learning through the use of dark
knowledge generated by self-distillation.

5) SD [8] exploits self-distillation to learn effective
representations to group point clouds in the target
domain.

The experimental results are shown in Fig. 2, with the
corresponding distillation methods highlighted in red. The
five tasks can all improve the performance of their backbone
networks after exploiting the KD. Compared with pseudo-
labels, dark knowledge from the teacher contains the similarity
information between classes [91], providing richer semantics.

In Section IV, we consider this observation and leverage
self-distillation in multistage MVC. For an MVC task, the view
data of the same instance are usually weakly correlated, and
the view data of different instances are sometimes correlated.
These correlations cannot be represented by a pseudo-label.
Thus, there is a need to construct a teacher network to
capture the distribution of features, which can serve as a self-
supervised signal to guide the iteration of the student network.
Through training the student, the student’s predictions come
to match the feature distribution of the teacher and achieve a
stable convergence. In other words, when the inputs are going
to be noisy, we hope the stable dark knowledge can provide
some improvement on the predictions of the student.

IV. PROPOSED MVC WITH SELF-DISTILLATION METHOD

Multiview data introduce more features, and thus, over-
confident pseudo-labels are poor to represent these features
accompanied by more noise, which results in existing

multistage clustering methods being difficult to adapt to this
MVC scenario.

To solve the abovementioned issues and alleviate the
overconfidence of pseudo-labels while learning the common
semantics of different views, we propose a novel technique,
the multiview distillation technique. Its contrastive method to
learn multiview semantics from different hierarchies is present
in the first place. Then, we incorporate this technique into a
novel multistage MVC framework (DistilMVC).

A. Framework Overview

Given a multiview dataset X = {Xv
∈ RN×Dv }

V
v=1, where

each view takes N samples. V denotes the number of views,
v ∈ {1, . . . , V }. Dv denotes the dimension of the vth view
sample Xv , and k ∈ {1, . . . , K } is the number of categories
to cluster (see Fig. 3). Overall, DistilMVC projects a given
dataset into a feature space wherein information consistency
and stability with self-distillation are guaranteed by involving
three joint learning objectives.

1) To reconstruct the views and build the feature space,
DistilMVC is equipped with an autoencoder for each
view, and the encoder and decoder for the view v

are denoted by fv and gv , respectively. A within-view
reconstruction loss is used to learn a view-specific
representation so that the trivial feature is abandoned.

2) To thoroughly understand the data and provide a feature
space for distillation, a student network (ws) contains
a predictor (wp) as a cluster head, and a teacher
network (wt ) is included, shared by all views and applied
to extract multiview features and project the original
features to the feature spaces of different hierarchies.
DistilMVC learns common semantics by maximizing the
mutual information of the feature spaces with different
hierarchies. Specifically, the student network and the
teacher network will construct two independent high-
dimensional subspaces and indirectly improve the lower
boundary of mutual information through contrastive
learning in their respective subspaces. At the same time,
we introduce IIC [31] to directly maximize the mutual
information of low-dimensional features.

3) To combat the overconfidence of pseudo-labels, we use
the dark knowledge output by the teacher as a new self-
supervised signal. The predictor wp converts the features
of ws into probability distributions and uses them
as soft labels for distillation. Specifically, the teacher
network outputs k-dimensional features and converts
1-D pseudo-labels into k-dimensional dark knowledge
by adjusting the temperature and adding a Softmax
activation function. The dark knowledge obtained by
the final distillation is used as the ground truth, and the
Kullback-Leibler divergence (KL) is used to measure its
similarity to the output of the student network.

B. Reconstruction Loss

Deep autoencoders can capture the salient features
of data and have applications in many unsupervised
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TABLE I
BACKBONE SETTINGS FOR DIFFERENT VISION TASKS AND THEIR CORRESPONDING IMPROVED KD METHODS

Fig. 3. Framework of the proposed DistilMVC. The encoder fv and decoder gv learn latent representation Zv for the vth view by reconstructing Xv

(Section IV-B). The student network ws and the teacher network wt capture hierarchical representations through contrastive learning in their subspaces, and
the latent representations {Z1, Z2, . . . , Zv

} maximize the mutual information pairwise (Section IV-C). The probability distribution of the obtained features of
the student network will be compared with the dark knowledge of the teacher network to calculate KL divergence (Section IV-D), where “Ema” denotes the
exponential moving average, and the teacher network is updated with momentum by the parameters of the student network.

domains [61], [94]. Therefore, we minimize

Lrec =

V∑
v=1

N∑
n=1

∥∥Xv
n − gv

(
f v

(
Xv

n

))∥∥2
2

=

V∑
v=1

N∑
n=1

∥∥Xv
n − gv

(
Z v

n

)∥∥2
2 (1)

to enable the autoencoder to convert heterogeneous multiview
data into a cluster-friendly latent representation Z v . For the vth
view, Xv

n represents the nth feature vector. The learned latent
representation is defined as Z v , and Z v

n denotes the nth latent
representation. X̂v is the reconstructed view of Z v . This design
can make the autoencoder maintain the respective diversity of
views, avoid the trivial solution, and prevent model collapse,
which is the basis for improving the performance of MVC.

C. Contrastive Loss

For the model to perform feature learning effectively, the
teacher network and the student network project the low-
dimensional representation {Z1, Z2, . . . , Z v

} into the higher
dimensional spaces {t1, t2, . . . , tv

} and {y1, y2, . . . , yv
} at

different hierarchies, respectively. To enable effective feature
learning at different hierarchies, we take the following
procedures: 1) optimizing Lstu and Ltea to indirectly raise
the lower bound of mutual information between views and 2)

Fig. 4. Calculation of student contrastive loss. A group of shared deep neural
networks ws and wp are used to extract features from different views. The
predictor wp is used to project the features into high-dimensional subspaces,
where y1

n and y2
n denote the pseudo-labels generated by Softmax operations in

this contrastive learning. The feature matrix y(1)(2)
matrix is obtained by multiplying

y1
n and y2

n , to learn common semantics.

optimizing LIIC to directly maximize the mutual information
between views. We propose an objective function for learning
common semantics

Lcon = Lstu + Ltea + LIIC. (2)

Each component of this objective function will be described
in detail in the following.

1) Student Contrastive Loss: Fig. 4 shows how contrastive
learning is used in the student network in the example case of
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Fig. 5. Illustration of the model structure of the student network and teacher
network.

V = 2. Given a batch of n (Z1
n, Z2

n) pairs, a student network
is trained to predict which of the n × n possible (Z1

n, Z2
n)

pairings across a batch actually occurred. To do this, wp

learns the multiview embedding space feature matrix y(v)(v′)
matrix

by maximizing the cosine similarity of y1
n and y2

n of n positive
sample pairs on the diagonal while simultaneously minimizing
the cosine similarity of the embeddings of (n2

− n) negative
sample pairs. The pairwise similarity in the feature matrix is
measured by cosine similarity as

cos
(

yv
n , yv′

m

)
=

(
yv

n

)(
yv′

m

)⊤∥∥yv
n

∥∥∥∥yv′
m

∥∥ (3)

where n, m ∈ [1, N ], v, v′ ∈ [1, V ], N > K , and v ̸= v′.
In order to optimize the pairwise similarity, without loss of
generality, given the sample pairs yv

n and yv′

n , we optimize the
symmetric cross-entropy loss

ℓ(v)(v′)
y

= −
1

2K

K∑
k=1

log

×
exp

(
cos

(
yv

k , yv′

k

)
/τs

)∑K
m=1

[
exp

(
cos

(
yv

k , yv
m

)
/τs

)
+ exp

(
cos

(
yv

k , yv′
m

)
/τs

)]
(4)

where τs is the student network temperature parameter that
controls the softness of the distribution. Since we wish to
identify all positive pairs of the entire dataset, the contrastive
loss of sample pairs sv

n and sv′

n needs to be computed on all
views, which we extend to V ≥ 2 as follows:

Lstu =

V∑
v=1

∑
v ̸=v′

ℓ(v)(v′)
y − H(Y ). (5)

In (5), we add an additional entropy balance term

H(Y ) = −

V∑
v=1

[
P(yv) log P(yv)+ P

(
yv′

)
log P

(
yv′

)]
. (6)

This regularization term avoids the trivial solution and prevents
all sample points from clustering into the same class.

Fig. 6. Calculation of mutual information between two views. The mutual
information of Z1

n and Z2
n can be directly obtained on a joint probability

distribution matrix PZ1
n ,Z2

n
. The matrix can be calculated by approximating

Z1
n and Z2

n as two independent discrete probability distributions.

2) Teacher Contrastive Loss: As shown in Fig. 5, both the
teacher network and the student network use the same feature
learning methods. The only distinction is that the teacher
network does not require an additional regularization term
to prevent model collapse. The goal of the teacher network
is to provide a supervised signal for the optimization of the
student network while providing high-dimensional features
{t1, t2, . . . , tv

} for linear separation. Specifically, we still learn
the mutual information of high-dimensional subspace through
contrastive learning and provide high-dimensional features
to cover the correlations and probability distributions among
samples. This also establishes feature space for subsequent
self-distillation.

We give the sample pair tv
n and tv′

n to optimize the symmetric
cross-entropy loss as

ℓ
(v)(v′)
t

= −
1

2N

N∑
n=1

log

×
exp

(
cos

(
tv
n , tv′

n

)
/τt

)∑N
m=1

[
exp

(
cos

(
tv
n , tv

m

)
/τt

)
+ exp

(
cos

(
tv
n , tv′

m

)
/τt

)]
(7)

where τt is the temperature parameter. Considering all views
on the dataset, we give the optimization objective of the
teacher network as

Ltea =

V∑
v=1

∑
v ̸=v′

ℓ
(v)(v′)
t . (8)

3) IIC Loss: Minimizing InfoNCE [55] at high-dimensional
hierarchies can be seen as maximizing the lower bound of
mutual information indirectly. That is, I (yv, yv′) ≥ log(n2

−

n) − Lstu, where I (yv, yv′) denotes the mutual information
between sv and sv′ , (n2

−n) is the number of negative samples,
and similarly I (tv, tv′) ≥ log(n2

−n)−Ltea. Different from the
above methods, we directly maximize the mutual information
between different views in low-dimensional hierarchies

LIIC = −

V∑
v=1

∑
v ̸=v′

N∑
n=1

I
(

Z v
n , Z v′

n

)
(9)

where I represents the mutual information. As shown in Fig. 6,
according to IIC [31], we approximate Z v

n and Z v′

n into two

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 13,2025 at 11:05:45 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: TOWARD GENERALIZED MULTISTAGE CLUSTERING: MULTIVIEW SELF-DISTILLATION 10317

independent discrete distributions and further obtain the joint
probability distribution of Z v

n and Z v′

n . Therefore, I is directly
calculated by

EPZ1
n ,Z2

n

(
PZ1

n ,Z2
n

log
PZ1

n ,Z2
n

PZ1
n
PZ2

n

)
. (10)

D. Self-Distillation Loss

To make better use of the learned common semantics for
clustering, we need to add some interactions for the two
independent student and teacher subspaces for fine-tuning.
The teacher network and the student network use the same
network structure, but the network parameters are different.
The teacher network is updated in the form of a moving
average [26], introducing a momentum encoder to provide
a regression target for the student network. θ and ξ denote
the learnable parameters of teacher network wt and student
network ws , respectively. The parameter θ is ξ exponential
moving average. With the target momentum being µ ∈ [0, 1],
the parameter θ is updated with

θ ← µθ + (1− µ)ξ. (11)

We do not use the soft labels output by the teacher network
directly as the distribution required for distillation because
such probability distributions do not contain obvious clustering
information. We will first use the cluster information contained
in the high-level features to improve the clustering effect of
semantic labels, and a new cluster center C can be obtained
by optimizing the following objectives:

min
{Cv}

V
v=1

∑
n∈X

K∑
m=1

V∑
v=1

∥∥θ zv
n − cv

m

∥∥2
2 = min

C

∑
n∈X

K∑
m=1

∥tn − cm∥
2
2

(12)

where θ is the parameter of the teacher network, C ∈

RK×
∑V

v=1 dv , cm = (c1
m, c2

m, . . . , cV
m ) ∈ RK×

∑V
v=1 dv , and dv is

the dimension of tn . This step is more efficient with the K -
means algorithm, so we can linearly separate the tn according
to the cluster center c to get the V group of pseudo-labels
{Pv
= argminm∥t

v
n−cv

n∥
2
2}

V
v=1. The Softmax activation function

will be stacked to the predictor’s final layer, and sv
nm is defined

as the probability that the nth sample is clustered into the
mth cluster for the vth view, so there are also V groups of
probability distributions {lv = argmaxm y(v)

nm }
V
v=1. However, Pv

and Iv are not aligned, so we need to define a loss matrix
M ∈ RK×K to help us correct Pv [43], m̃nm =

∑
n∈X ⊮[lvi =

n]⊮[lvi = m], element mnm = maxn,m m̃nm − m̃nm . The
alignment problem will be treated as a maximum matching
problem

min
A

K∑
i=1

K∑
j=1

mi j ai j

s.t. AAT
= IK (13)

where A ∈ RK×K is a Boolean matrix, and (13) is optimized
using the Hungarian algorithm [32] to get {P∗v}Vv=1. Here, the

dark knowledge is defined as [(1− τd)P∗v + τdu], and we use
the KL divergence distillation model

Lself =

V∑
v=1

DKL
(
[(1− τd)P∗v + τdu], yv

)
= −

V∑
v=1

[
(1− τd)P∗v + τdu

]
log
[(1− τd)P∗v + τdu]

yv

(14)

where τd is a distillation factor, and u is a Gaussian
distribution. yv is a sharp distribution whereas the dark
knowledge is a smooth distribution, and thus, the above KL
divergence can make them form a confrontation, effectively
preventing the model from collapsing. Empirically, we set
τd = 0.1.

E. Training and Inference

Lrec is the reconstruction loss of the autoencoder, and Lcon
and Lself implement feature learning and label distillation,
respectively. A dynamic balance factor is usually used to
measure the loss throughout the training process [21]. But in
practice, we have found that simply adding together all these
losses works well, so there is no need to set the balance factor.

During the pretraining stage, we fed the dataset X to
DistilMVC and use (Lrec+Lcon) as the objective function for
training. Learning different hierarchies of mutual information
can provide rich semantic knowledge, which lays the
foundation for subsequent distillation. The pretrained model is
loaded and fine-tuned by optimizing (Lrec + Lcon + Lself) to
alleviate the wrong traction of pseudo-labels and improve the
clustering performance. In our design, even though the initial
teacher may not necessarily be accurate, such a weak teacher
can still work because our KD is essentially a regularization
process [17], [91]. Hence, our self-distillation loss is equal to

Lself =

V∑
v=1

H
(
[(1− τd)P∗v + τdu], yv

)
=

V∑
v=1

[(1− τd)P∗v + τdu] log yv

=

V∑
v=1

(1− τd)H(P∗v, yv)+ τd H(u, yv)

=

V∑
v=1

(1− τd)H(P∗v, yv)+ τd(DKL(u, yv)+ H(u)).

(15)

Since the entropy H(u) is constant, (14) is equal to

Lself =

V∑
v=1

((1− τd)H(P∗v, yv)+ τd DKL(u, yv)). (16)

Lself not only minimizes the prediction error (H(P∗v, yv))
between the teacher and the student, but also includes
DKL(u, yv) as a regularization term for a label smoothing
regularization. This term penalizes predictions that deviate
from the distribution u, thereby reducing the student’s
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overconfidence in any specific class even though the input
instance does not belong to that class. As a result, the student’s
depiction will not be exclusively fixed on one class, but will be
distributed among all possible classes. This approach alleviates
the dependence on multiview data with noise, boosting the
robustness and of the model. τd adjusts the weight of the
regularization term, with a higher τd value means a stronger
smoothing effect. For a weak teacher, we adapt τd value as
well. Therefore, our self-distillation process can improve the
generalization of the student in case the teacher is unreliable
or even quite weak.

In the inference stage, we fed the multiview data to
DistilMVC, and the predictor wp in the student network will
obtain the probability distribution of all view clusters {y(v)

nm }
V
v=1,

which is weighted and summed on each view to get the final
clustering result, argmaxm((1/V ) sumV

v=1 yv
nm). The detailed

steps are summarized in Algorithm 1.

Algorithm 1 Model Training With DistilMVC
Input: dataset X ; pretraining epochs Tp; fine-tuning

epochs Tt ; view number V ; cluster number K ;
encoder f v; decoder gv; predictor wp; student
ws ; teacher wt .

Output: clustering assignments Y
Initialize:
Sample multi-view data {Xv}

V
v=1 from X

Get the latent representation by Z v
= f v(Xv)

Get the student representations by yv
= wp(ws(Z v))

Get the teacher representations by tv
= wt (Z v)

(Procedure 1) Pretraining Stage:
for epoch = 1 to Tp do

if the f v and gv are not convergence then
Get the reconstruction loss Lrec by Eq. (1)

else
Get the student contrastive loss Lstu by Eq. (5)
Get the teacher contrastive loss Ltea by Eq. (8)
Get the invariant information clustering loss LI I C
by Eq. (9)
Update f v, gv, wp, ws, wt through gradient
descent to minimize Eqs. (1) and (2).

end
end
(Procedure 2) Fine-tuning Stage:
Load model weights and X
for epoch = 1 to Tt do

Distill dark knowledge by Eq. (14)
Get the overall loss L by Eqs. (1), (2) and (14).
Update f v, wp, ws, wt through minimizing L
Momentum update ws ← wt by Eq. (11)

end
(Procedure 3) Inference Stage:

Compute predictions by yv
= wp(ws( f v(Xv)))

Get cluster assignment by
Y = argmax

( 1
V sumV

v=1 yv
)

V. EXPERIMENTS

In this section, we evaluate the proposed DistilMVC method
on eight widely used multiview datasets and compare it with
eight SOTA clustering methods.

Fig. 7. Relation between PUR and ACC values. PUR = ACC indicates that
there is a one-to-one correspondence between the predicted labels of clusters
and their ground-true labels. When PUR > ACC, there exist duplicated
clusters. Since the proportion of “dog” in the predicted clusters is larger,
there are two clusters marked with the label “dog.”

A. Datasets and Experimental Settings

1) Comparisons With State of the Arts: The comparison
methods include three traditional methods (i.e., MVC-
LFA [71], IMVTST-MVI [76], and SL-CAUBG [90]) and
seven deep methods (i.e., CDIMC-net [75], EAMC [96],
SiMVC [65], CoMVC [65], COMPLETER [47], SURE [88],
and MFLVC [84]). For all methods, we use the recommended
model structure and parameters for fair comparisons.

2) Datasets: In our experiments, we used eight datasets:
Scene [18], MNIST-USPS [57], BDGP [7], Fashion [78],
Caltech-2V, Caltech-3V, Caltech-4V, and Caltech-5V. To eval-
uate the robustness of DistilMVC over the number of
views, Caltech [19] as a multiview RGB image dataset is
disassembled into Caltech-2V, Caltech-3V, Caltech-4V, and
Caltech-5V. Table II describes the datasets used in more detail.
As the most popular dataset used in MVC, their feature
dimensions are adequate to capture essential characteristics
and conform to domain standards, thereby supporting the
reliability of our experimental results.

3) Experimental Implementation: We conduct all the
experiments on the platform of Ubuntu 16.04 with Tesla P100
graphics processing units (GPUs) and 32G memory size. Our
model and baseline are built on the PyTorch 1.11.0 framework.
Based on extensive ablation studies, the batch size is set
to 128, and the epochs for the two phases of pretraining
and fine-tuning were set to 150 and 50, respectively. The
temperature parameters τs , τt , and τd are fixed to 0.5, 1.0, and
0.1, respectively. We use Adam optimizer [35] with the default
parameters to train our model and set the initial learning rate
as 0.0001. The structure of the autoencoder for the vth view is
defined as Xv

−Fc512−Fc1024−Fc2048−Fc512− Z v
−Fc512−

Fc2048 − Fc1024 − Fc512 − X̂v , where Fc512 denotes a fully
connected neural network with 512 neurons, and each layer is
followed by a rectified linear unit (ReLU) layer. As shown in
Fig. 5, the teacher network structure and the student network
structure have two linear layers each, and the ReLU activation
function is added in the middle.

4) Evaluate Metrics: The clustering performance is evalu-
ated with three metrics: ACC, normalized mutual information
(NMI), and purity (PUR). More details on these indicators can
be found in [4]. A higher value of these evaluation indicators
can reflect a better clustering performance.
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TABLE II
DATASET SUMMARY

TABLE III
PERFORMANCE COMPARISONS ON FOUR DUAL-VIEW DATASETS. THE FIRST-BEST RESULTS ARE INDICATED IN RED,

AND THE SECOND-BEST RESULTS ARE INDICATED IN BLUE

TABLE IV
PERFORMANCE COMPARISON OVER FOUR MULTIVIEW DATASETS. THE SYMBOL “–” DENOTES UNKNOWN RESULTS,

AS COMPLETER AND SURE MAINLY FOCUS ON TWO-VIEW CLUSTERING

B. Experimental Results and Analysis

Tables III and IV list the clustering performances of all
methods on eight datasets, from which we obtain the following
observations.

1) Our DistilMVC achieves the best performance on
all datasets. Compared with the second-best method,
DistilMVC has a significant improvement, especially
surpassing 7.6% on the Caltech-4V dataset.

2) COMPLETER and SURE suffer from missing and
unaligned data problems, respectively, so we evaluated
the above two methods using complete and aligned data
and found that they still significantly underperformed
DistilMVC.

3) On the Caltech dataset, DistilMVC shows considerable
improvement as the number of views increases.

4) PUR calculates the proportion of the samples in a cluster
with the ground-true label [4]. ACC only concerns
about the best-matched cluster with the ground-true
label [32].

Therefore, the case that some clusters share the same label
will lead to PUR > ACC [52]. Our DistilMVC obtains the
same value for both ACC and PUR on all six datasets, which
indicates that there is a strict one-to-one relation between
the predicted clusters by DistilMVC and the ground-true
clusters, i.e., no cluster’s labels are duplicated, ensuring that
the semantics of each predicted cluster are independent of each
other (see Fig. 7). In contrast, the PUR values of all other
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Fig. 8. Visualization on eight datasets via t-SNE [66]. For each dataset, we visualize the fused representation of different views and the fused representation
obtained by the student network after DistilMVC training. (a) Caltech-2V. (b) Scene. (c) MNIST-USPS. (d) BDGP. (e) Caltech-3V. (f) Caltech-4V.
(g) Caltech-5V. (h) Fashion.

Fig. 9. Clustering ACC of DistilMVC. The x-axis denotes the training epochs on four datasets, and the left and right y-axes denote the clustering ACC
and corresponding loss value, respectively. (a) Convergence on Caltech-2V. (b) Convergence on BDGP. (c) Convergence on Caltech-5V. (d) Convergence on
fashion.

methods are higher than their ACC values. This also confirms
the robustness of our method.

The reasons for the above observations can be explained as
follows.

1) None of the baselines take into account the over-
confident traction of inaccurate pseudo-labels, resulting
in limited clustering quality.

2) COMPLETER and SURE suffer from a lack of deep
mining of mutual information at different hierarchies.

3) With the increase in data views, not only it is the
inherent noise of the data introduced, but also it leads
to the mistakes of positive sample pairs as negative
ones. DistilMVC can filter out some of the inconsistent
noise and provide more stable clustering according to
smooth dark knowledge rather than pseudo-labels. The
Fashion dataset has only the least number of views, i.e.,
three views, and has fewer noises compared to the other
datasets. All models thus easily capture the underlying
patterns and achieve advanced clustering results, leading
to the improvement of DistilMVC on the baselines is
limited.

4) PUR values of all other methods are higher than their
ACC values, which means different predicted clusters
share the same label.

Over-confident pseudo-labels generated by baselines pro-
vide incorrect clustering directions. On the other hand,
DistilMVC uses dark knowledge instead of pseudo-labels to
provide a more precise guide for self-supervised clustering
and thus corrects the false clustering directions, while using
the Hungarian algorithm to ensure that the label of each cluster

is distinct. Hence, the ground-true cluster labels and predicted
cluster labels have one-to-one correspondence. This is the core
idea of multiview self-distillation.

Unlike traditional and existing deep MVC approaches,
our DistilMVC targets to further optimize the pseudo-label
learning. The overconfidence of pseudo-labels is alleviated by
self-distillation, and robust clustering results are obtained by
learning different hierarchies of mutual information to enforce
the consistency of different views. In addition to the clustering
performance, the visualization of the learned available features
is shown in Fig. 8. All datasets except Caltech-2V eventually
converge well, and Caltech-2V has poor clustering due to its
large number of views and small number of samples. We also
find that the data distribution becomes more compact and
independent through training, and the clustering density is
higher, indicating that our multiview self-distillation method
achieves an effective improvement in clustering performance.

C. Model Analysis

1) Convergence Analysis: We investigate the convergence
of DistilMVC by reporting the loss value and the correspond-
ing clustering performance with increasing epochs. As shown
in Fig. 9, one could observe that the loss remarkably decreases
in the first 20 epochs, and meanwhile, the ACC of different
views continuously increases and tends to be smooth and
consistent.

2) Parametric Analysis: The temperature hyperparameters
τs [see (4)] and τt [see (7)] are used to control the shape of the
distribution. As shown in Fig. 10(a), we change their values
in the range of [0.1, 1.0] and the interval is 0.1.
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Fig. 10. Clustering performance of DistilMVC on the Caltech-5V dataset with different parameters τs and τt , including (a) 3-D bar graph and (b) and (c) 3-D
surface graph. In the (b) and (c) 3-D surface graphs, the green region, yellow region, and orange region indicate that the ACC is in the ranges (0.6, 0.7],
(0.7, 0.8], and (0.8, 0.9], respectively.

TABLE V
ABLATION STUDIES ON LOSS COMPONENTS ON CALTECH-2V, CALTECH-3V, CALTECH-4V, AND CALTECH-5V. “✓” DENOTES DISTILMVC

WITH THE COMPONENT, AND “*” INDICATES THE METHOD OF ADDING SELF-DISTILLATION ON THE ORIGINAL MODEL

In Fig. 10(c), the orange region belongs to the temperature
comfort zone, accounting for 37.04% of the total region and
is in the center. The dark knowledge in this region contains
rich semantic information, i.e., the KL divergence between
the dark knowledge and the output distribution of the student
network is lower, which also proves that DistilMVC can
bring high-quality supervision to the student network. The
yellow and green regions account for 45.73% and 17.23%
of the total region, respectively, and are distributed at the
edges. The yellow region is between the orange region and
the green region, which is a buffer zone, and the clustering
performance decreases slightly in this region. The green region
proves that the temperatures τs and τt are too large or too
small, which will obviously reduce the clustering performance,
so our choice needs to avoid the green region. The reasons
are as follows: 1) when τs and τt are close to 1 at the
same time, they will enter the green region. The reason
is that the temperature τs and τt are too large and the
distribution is too smooth, so the model fails to learn the
focus and collapses and 2) when τt is 0.1, it will enter the
green region. The reason is that the temperature τt is too
small and the distribution is too peak, so the model will
pay special attention to difficult negative samples, making it
difficult for the model to converge or the learned features to
generalize.

3) Ablation Experiment: We perform the ablation study to
demonstrate the importance of each component of our method.
As shown in Table V, we designed six sets of schemes on

four datasets with different numbers of views and observed
the following results.

1) All losses play an integral role in DistilMVC.
2) A significant improvement is obtained after introducing

the self-distillation method on (1), (3), (5), and (6),
which further proves that our method can effectively
mitigate the problem of overconfidence in pseudo-labels
and thus improve the clustering performance.

3) The addition of self-distillation in (2) and (4) leads to
model degradation.

4) Comparing (1) and (6), we can see that optimizing the
loss Lcon can lead to a huge improvement, proving the
effectiveness of our proposed method for maximizing
mutual information at different hierarchies.

5) The above four observations hold for all datasets, which
also demonstrates the robustness of our method.

The reasons for the above observations can be explained as
follows.

1) Lrec establishes the feature space for feature learning,
Lcon learns features by maximizing mutual information
at different hierarchies, and Lself improves error
prediction by reducing the confidence of the model, and
each of the three components is responsible for and
reinforces each other.

2) The pseudo-labels are derived from the high-
dimensional features learned by the teacher network,
and the self-distillation method can transform the
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pseudo-labels into dark knowledge, improving the
quality of the supervised signal.

3) View reconstruction is conducive to maintaining the
complementarity between views, which is the basis of
feature learning. If Lrec is skipped and Lcon is directly
optimized, complementary information will be lost.
Therefore, for (2), the features learned by the teacher
network are not linearly separable due to the lack of
complementary information, so they are not suitable for
distillation. For (4), teacher networks are not involved
in learning, and inaccurate distillation can provide more
false labels to student networks.

4) Optimized Lcon can maximize mutual information at
different hierarchies from teacher, student, and encoder,
which greatly facilitates consistent learning.

5) DistilMVC has strong generalization ability and robust-
ness. Thus, multiview self distillation is well-suited
for feature learning and clustering in stages for highly
qualified clustering.

VI. CONCLUSION

In this article, we propose a novel and flexible DistilMVC,
which can handle all kinds of multiview data to enable
effective MVC. Based on a self-distilled architecture,
DistilMVC can effectively alleviate false predictions caused
by overconfidence in pseudo-labels, and when combined
with a feature learning method of different hierarchies of
mutual information, it achieves SOTAs on eight datasets.
Thus, it solves a persistent nuisance of MVC: the pseudo-
labels obtained by feature learning are not adequate for
self-supervised signals. Such a unified framework will provide
novel insight for the community to understand MVC. In the
future, we plan to further explore the potential of our
theory and framework for other multiview learning tasks,
such as incomplete MVC, cross-modal retrieval, and 3-D
reconstruction.
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