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Abstract—Multi-view clustering (MVC) can explore common
semantics from multiple views and has been extensively used
to support management with unsupervised training data. How-
ever, the issue of spatio-temporal asynchronism often leads to
multi-view data being missing or unaligned in the real world.
This limit poses significant challenges in learning consistent
representations. This paper proposes a deep MVC framework
where data recovery and alignment are fused hierarchically from
an information-theoretic perspective, maximizing the mutual
information among different views and ensuring the consistency
of their latent spaces. To address the issue of missing views, we
use dual prediction for instance-level alignment. While leveraging
contrastive reconstruction enhances the mutual information of
features within the same class for class-level alignment. This could
be the first attempt to view recovery and alignment can be solved
simultaneously in a unified theoretical framework. Extensive
experiments show that our method outperforms baseline methods
even in the cases of missing and unaligned views.

Index Terms—Multi-view clustering, Missing and unaligned
views, Mutual information

I. INTRODUCTION

The quality of training data is critical for multi-modal
learning, particularly in practical applications of large multi-
modal models [1] where massive data are frequently gath-
ered from different sources or multiple views. In this case,
semantics serves as meaningful, shared information extracted
from different views, even if the data representation (such as
pixels in images and words in text) may vary across views.
As an important unsupervised technology for multi-modal data
management, multi-view clustering (MVC) [2] aims to mine
common semantics to improve learning efficiency. Despite po-
tential differences in multi-view data presentation, significant
progress has been made. The success of all existing work [3]–
[5] is supported under the assumptions of the completeness of
data and the consistency of different views strictly. However,
these two assumptions (see Fig 1(a)) would inevitably be
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violated in the real world. Firstly, a Partially View-unaligned
Problem (PVP) always exists due to the asynchronism of data
transmission. Even worse, PVP even coexists with the Partially
Sample-missing Problem (PSP) (see Fig 1(b)), while the data
transmission of one view fails. It is a practical need and a
challenge to learn common semantics and alleviate the impacts
of PVP and PSP to ensure learning consistency.

Previous MVC methods can be roughly classified into three
subgroups, i.e., i) MVC methods for complete data [3]–[5]
strive to learn discriminative representations by utilizing the
consistency and complementary information from different
views; ii) PVP-oriented MVC methods [6]–[8], which build
cross-view mappings at the instance level in an unsupervised
manner; and iii) PSP-oriented MVC methods [9]–[13] which
utilize existing views by way of mathematical derivation or
model prediction to recover lost views. Although existing
MVC methods have achieved important progress [6], [7], [9]–
[11], [14] in solving PSP or PVP, few solve PSP and PVP
jointly. Yang et al. found that the correspondence of negative
pairs in contrastive learning might be false, i.e., false negatives,
and propose SURE [15] to handle that. SURE imputes the
missing sample by the weighted sum of its peers in the same
view. It re-aligns samples through contrastive learning, estab-
lishing class-level correspondences to unify the handling of
PVP and PSP. However, two challenges remain: i) the inability
to solve PVP and PSP independently and simultaneously,
resulting in the need for alignment to rely heavily on fill
performance; and ii) its class-level imputing and alignment
can not provide detailed information for each instance in the
dataset, and degrade its clustering accuracy. From information
theory, since missing and unaligned data exist in different
hierarchies, the proposed model must also be designed using
different hierarchies of mutual information. Hierarchies are
different types of data representation and processing methods
are conducted, allowing the model to capture and integrate
information on multiple scales. Mutual information and the
conditional entropy between different views measure multi-
view data’s consistent and inconsistent semantics, respectively
[10]. Therefore, we aim to base both PVP and PSP respective
solutions on mutual information enhancement algorithms to
enhance each other in a unified mutual information framework.
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Fig. 1. Illustrative examples of the PVP and PSP. Taking bi-view data as
a showcase, we use two rows of polygons to denote two views, where each
column of polygons represents a pair of instances that may be incomplete or
unaligned. Polygons with the same shape belong to one class (or ”category”),
and the same color is a pair of aligned instances. The ”?” denotes that the
view sample is missing. (a) Multi-view data: Ideally, the data has no missing
or unaligned samples. (b) Incomplete data: Due to the complexity of data
collection and transmission in practice, there are missing and unaligned view
samples in the raw data, leading to PVP and PSP. (c) Instance-level recovery
and alignment: recovers the missing samples of the corresponding views based
on the existing view samples in the same instance. Class-level alignment:
Minimize the distance between samples of the same class while maximizing
the distance between samples of different classes.

We propose a novel incomplete MVC framework, multi-view
clustering via maximizing hierarchical mutual information
(HmiMVC), to conquer the challenges of PVP and PSP caused
by the lack of correspondence between views. HmiMVC
projects a raw dataset into a hierarchical latent space wherein
information consistency is guaranteed. As shown in Fig.
1(c), we solve PVP by maximizing the mutual information
between already aligned views through contrastive learning
to achieve class-level alignment. To solve both PSP and
PVP, we introduce dual prediction to predict the missing
data while minimizing the conditional entropy, constituting a
natural instance-level alignment. Finally, we merge two levels
of alignment strategies into a unified reconstruction process in
a hierarchically consistent way to avoid model collapse. The
main contributions of this paper are:

• We address PVP and PSP simultaneously in a mutual
information framework, enabling data recovery and align-
ment to be mutually reinforcing by novelly parallelizing
class-level and instance-level strategies.

• From an information-theoretic insight, the proposed
HmiMVC method has a novel loss function that achieves
information consistency and data restorability using a
contrastive loss and a dual prediction loss.

• Extensive experiments demonstrate that HmiMVC boosts
mutual information and achieves state-of-the-art cluster-

ing effectiveness.
Ensuring the completeness and alignment of multi-view

data is imperative for industrial processes’ safe and stable
operation. By re-aligning and filling samples, HmiMVC can
further be applied to other applications, including but not
limited to cross-modal retrieval, autonomous driving, etc.

II. RELATED WORK

A. Multi-view Clustering.

The assumption of data completeness is the foundation of
almost all MVC techniques. However, view correspondence
and instance completeness are lost upon violation of the
assumption, resulting in PVP and PSP. Researchers have
achieved substantial progress in addressing PSP using various
methods [9]–[13]. PVP remains a relatively unexplored issue
despite these advancements, as highlighted in recent studies
[7]. However, PVP can only find the optimal alignment path
using the traditional Hungarian algorithm [16]. Subsequently,
PVC [7] has implemented differentiable Hungarian algorithms,
and MvCLN [6] has achieved the class-level alignment using
robust contrastive loss. Although SURE [15] has extended
the filling of missing views based on MvCLN, class-level
imputation does not provide detailed information about the
data samples, and the quality of the alignment directly relies
on the performance of the imputing, which increases the
risk to use the features learned on the mistaken samples. In
addition, Wen et al. [8] used the structural information of
each view to refine the alignment relations, thus alleviating the
need for MVC for the paired samples. Similarly, Zeng et al.
[17] discover the existence of invariant semantic distributions
across views, and design a training process without paired
samples. However, this type of approach is sensitive to the
features and distribution of the data, especially when there are
complex nonlinear relationships between different views.

Considering the limitations of the existing work, our
HmiMVC implements, for the first time, independent and
simultaneous data recovery and alignment and supports this
process according to hierarchical mutual information. On the
other hand, HmiMVC blends class-level and instance-level
strategies to capture details and features from the data, thus
improving the model’s ability to learn more complex patterns
and discriminative information. Since the priori information
of sample pairs is provided, our model is easier to converge,
especially in the case of noisy data or large cross-view
discrepancy.

B. Contrastive Learning.

Contrastive learning [18]–[24] is an essential method for
unsupervised learning [25], [26] and requires the pre-definition
of positive and negative samples. Its primary objective is to
maximize the similarity in feature space among positive sam-
ples while increasing the distance between negative ones. This
approach enhances the model’s ability to recognize similar
samples and facilitates more accurate classification. For exam-
ple, SimClR [18] or MoCo [19] minimize the InfoNCE loss
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Fig. 2. Overview of HmiMVC. Bi-view data is used as a showcase in this figure. Our method contains three joint learning objectives, i.e., noise-robust
contrastive learning, dual prediction, and reconstruction. Specifically, the noise-robust contrastive learning objective learns class-level alignment relations from
aligned positive and unaligned negative samples. Dual prediction allows for constructing instance-level alignment and recovering missing views from one of
its existing views. The goal of reconstruction loss is to maintain the diversity of views and project all views into view-specific spaces.

function [27] to maximize the lower bound of mutual informa-
tion. Since the processing of negative samples is cumbersome,
BYOL [20], SimSiam [21], and DINO [22] have successfully
transformed the contrastive task into a prediction task with-
out defining negative samples and achieved amazing results.
Therefore, no matter what kind of contrastive learning method,
its essence is to maximize the mutual information between
positive samples. Although existing studies [3], [19], [28]
have shown that consistency could be learned by maximizing
the mutual information of different views, they ignore it at
different hierarchies. Lin et al. demonstrated that inconsistency
in learning can be defined in terms of conditional entropy.
Consequently, our strategy of learning mutual information
from other hierarchies can be seen as an effective means to
alleviate inconsistent learning [9], [10].

In contrast, HmiMVC uses robust contrastive learning to
reduce the impact of false-positive samples to solve PVP
and minimizes the conditional entropy to cope with PSP.
Additionally, our method is specifically designed for handling
missing and unaligned data, whereas the existing contrastive
learning works ignore this practical problem.

III. METHOD

In this section, we propose a new deep multi-view clustering
method, HmiMVC, to learn the representation of incomplete
and unaligned multi-view samples in different hierarchies. For
clarity, we will first introduce the proposed loss function and
then elaborate on each objective.

A. Notations and Motivation

A multi-view dataset XN =
{
X

(v)
Nx

,S
(v)
Ns

,W
(v)
Nw

}V

v=1
in-

cludes N samples across V views, where v ∈ [1, V ] denotes

the view index.
{
X

(v)
Nx

}V

v=1
=

{
x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
Nx

}V

v=1
denotes the complete alignment data used for training,
where Nx is the number of complete and aligned instances.{
S
(v)
Ns

}V

v=1
/
{
W

(v)
Nw

}V

v=1
denotes the data with PVP/PSP,

where Ns is the number of unaligned instances and Nw is the
the number of missing instances( N = Nx + Ns + Nw). So
the missing rate of data α = Nw

N , the unaligned rate β = Ns

N ,
and the proportion of complete and aligned data is γ = Nx

N .
With the above definitions, we assume that the data used

for clustering has both missing and unaligned cases (Ns >
0, Ns > 0), which are fully utilized to build the model by
XNx , so that the model fills up the missing parts of SNs

and realigns WNw
during clustering process. To accomplish

this, existing MVC methods project the original features into

the feature space, fusing the features of all views
{
z
(v)
N

}V

v=1
to obtain a common representation of all views. Clustering
the fused features directly transforms the multi-view clus-
tering task into a single-view clustering task. One of the
persisting challenges is that some methods prioritize data
filling over alignment, resulting in outcomes that are heavily
influenced by the chosen filling strategy. Therefore, we hope
to design an algorithm capable of handling the missing and
unaligned problems simultaneously and in parallel at different
hierarchies. As shown in Fig. 2, we propose that HmiMVC
implements class-level alignment and instance-level filling at
different hierarchies, respectively, and it consists of three
learning objectives:

L = Lcl + Lpre + Lrec , (1)

where Lcl, Lpre, and Lrec are noise-robust contrastive loss,
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dual prediction loss, and view reconstruction loss, respectively.

B. Class-level Alignment.

At this hierarchy, we maximize mutual information across
views to ensure consistency learning and thus understand the
alignment relation [7]. The most intuitive idea is to realize
this process through contrastive learning, positive pairs are
defined as samples that are aligned across different views but
belong to the same class, whereas negative pairs may include
samples from different classes or unaligned samples within the
same view. Through this mechanism, the model can discover
and reinforce the consistency of category information across
different views. As shown in Fig. 2, we use

(
x
(1)
i ,x

(2)
i

)
as

positive pairs (i < Nx), and stochastically select cross-view
samples to form negative pairs

(
x
(1)
i ,x

(2)
j

)
. Considering the

impact of false-negative samples [15], mathematically,

Lcl =
1

2Nc

Nc∑
i=1

(Y Lpos
i + (1− Y )Lneg

i ) , (2)

where Nc represents the total number of sample pairs, and
Y = 1/0 for positive/negative pairs. Then the feature con-
trastive loss between x

(1)
i and x

(2)
i for the i-th pair of positive

samples is formulated as:

Lpos
i =

∥∥∥f1 (x(1)
i

)
− f2

(
x
(2)
i

)∥∥∥2
2
=

∥∥∥z(1)i − z
(2)
i

∥∥∥2
2
, (3)

where fv and z
(v)
i denote the encoder and the latent represen-

tation of x(v)
i , respectively. We aim to maximize

(
z
(1)
i , z

(2)
j

)
’s

distance in a latent space by minimizing

Lneg
i =

1

τ
max

(
τ
∥∥∥z(1)i − z

(2)
j

∥∥∥ 1
2

2
−
∥∥∥z(1)i − z

(2)
j

∥∥∥ 3
2

2
, 0

)2

,

(4)
where τ is the temperature parameter computed only once
at the initial state with τ = 1

Npos

∑
d
(
x
(1)
i ,x

(2)
i

)
+

1
Nneg

∑
d
(
x
(1)
i ,x

(2)
j

)
, Npos and Nneg denote the num-

ber of positive and negative pairs (Nc = Npos +
Nneg), respectively. In the inference phase we have∑V

v1

∑V
v2 ̸=v1

C
(
s
(v1)
i , s

(v2)
j

)
= V (V − 1), realigning s

(v1)
i

and s
(v2)
j by computing the Euclidean distance C(.).

C. Instance-level Recovery and Alignment.

To address the PSP in PVP, we mitigate the inconsistency
between views by minimizing the conditional entropy at
another hierarchy of the feature space [10]. Specifically, we
achieve the above goal by training dual prediction networks
so that views can predict each other. In this way, we can
predict missing views from existing views. This module fills
in the missing data and achieves the natural instance-level
alignment. The metric of Normalized Mutual Information
(NMI) can describe this process. According to its definition,

NMI(z
(1)
i , z

(2)
i ) =

H(z
(1)
i )−H

(
z
(1)
i |z(2)

i

)
H(z

(1)
i )+H(z

(2)
i )

, minimizing the con-

ditional entropy H
(
z
(1)
i | z(2)i

)
maximizes NMI. According

to the variational inference [9], we introduce a network d(v)
that minimizes the conditional entropy approximately by min-
imizing

H
(
z(1) | z(2)

)
= −EP

z(1)·z(2)

[
logP

(
z(1) | z(2)

)]
. (5)

Maximizing EP
z(1),z(2)

[
logQ

(
z(1) | z(2)

)]
by neglecting the

constants derived from the Gaussian distribution is equivalent
to minimize

EP
z(1),z(2)

∥∥∥z(1)i − d(2)
(
z
(2)
i

)∥∥∥2
2
, (6)

where d(2) could be a parameterized model which maps z(2)

to z(1), as shown in Fig. 2. Further, we have

Lpre =
∥∥∥d(1) (z(1)i

)
− z

(2)
i

∥∥∥2
2
+

∥∥∥d(2) (z(2)i

)
− z

(1)
i

∥∥∥2
2
. (7)

After the model converges, we predict the missing view
and form a natural instance-level alignment, i.e., w

(1)
i =

d2

(
f(2)

(
w

(2)
i

))
, where w

(1)
i is the missing sample predicted

to be recovered by the representation of w
(2)
i . So w

(1)
i and

w
(2)
i are aligned on the instance-level.

D. Reconstruction for Hierarchical Consistencies

For each view, we feed it into an autoencoder for learning
the latent representation z(v) by minimizing

Lrec =
1

2Nx

N∑
i=1

2∑
v=1

∥∥∥x(v)
i − gv

([
z
(1)
i , z

(2)
i

])∥∥∥2
2
, (8)

where gv denotes the decoder for the v-th view. As a result,
the conflict between the reconstruction objective and two
consistency objectives is alleviated, and trivial solutions are
avoided.

IV. EXPERIMENTS

This section evaluates the proposed HmiMVC on four
widely-used multi-view datasets and compares it with three
state-of-the-art clustering methods.

TABLE I
DATASET SUMMARY

Datasets Size # of categories Dimension
Scene-15 4485 15 20/59

Deep Animal 10158 50 4096/4096
MNIST-USPS 5000 10 784/784
Caltech101-20 2386 20 1984/512

A. Experiment Setup

Datasets. Four widely-used datasets are used in our ex-
periments as shown in Table I. 1) Scene-15 [29] consists of
4,485 images distributed over 15 Scene categories, and we use
two views of PHOG [30] and GIST [31] features, 20D and
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59D feature vectors, respectively. 2) Deep Animal consists
of 10,158 images from 50 classes and includes two types
of 4096-dim features of [32] extracted by DECAF [33] and
VGG19 [34] respectively as two views. 3) MNIST-USPS [35]
is a popular handwritten digit dataset containing 5,000 samples
with two different styles of digital images. 4) Caltech101 [36]
consists of 9,144 images following [9] with the views of HOG
[30] and GIST features.

Implementation. All our datasets are reshaped into vectors.
We set the dimension of the autoencoder and prediction model
to dim-1024-1024-1024-10-1024-1024-1024-dim, where dim
is the dimension of the input data and a batch normalization
layer and a ReLU layer follows each layer. Autoencoders for
all views in HmiMVC are implemented using fully connected
neural networks with similar architecture. MLPs are used to
implement instance-level recovery and alignment, and each
MLP has three linear layers with ReLU activation functions
added in the middle of each layer. Based on extensive ablation
studies, the batch size is 1024 and the training epochs are
150, respectively. We utilize Adam optimizer [37] with default
parameters and a learning rate 0.0001.

To further verify the generalization of HmiMVC among dif-
ferent datasets, we conduct experiments in complex scenarios
where both PVP and PSP coexist. We randomly select Nx,
Nw, and Ns instances as training data, incomplete data, and
unaligned data, respectively. The ratio of unaligned data β and
missing data α is both set to 0.25 to simulate PVP and PSP.

Comparison methods. We chose three classical and state-
of-the-art methods to compare with HmiMVC, including
robuSt mUlti-view clusteRing with incomplEte information
(SURE) [15], inCOMPlete muLti-view clustEring via con-
TrastivE pRediction (COMPLETER) [9] for PSP-only, and
Multi-view Contrastive Learning with Noise-robust loss (Mv-
CLN) [6] for PVP-only. Since few methods in the community
work in our experimental settings, we had to add constraints to
the selected methods to ensure the fairness of the comparison.
Due to COMPLETER not handling unaligned data, we es-
tablish the alignment relationship directly with the Hungarian
algorithm. The alignment modules of SURE and MvCLN must
rely on the complete data that has been filled, so 50% of the
data is filled before alignment. MvCLN cannot handle missing
views, so we compute the mean of the same view to fill in the
missing samples.

Evaluation metrics. The clustering effectiveness is eval-
uated by three metrics, i.e., Normalized Mutual Information
(NMI), Accuracy (ACC), and Adjusted Rand Index (ARI).

B. Convergence Analysis

We investigate the convergence of HmiMVC by reporting
the loss value and the corresponding clustering performance
with increasing epochs. As shown in Fig. 3, one could observe
that the loss remarkably decreases in the first 20 epochs, and
various evaluation metrics continuously increase and tend to
be smooth and consistent. Furthermore, we show t-sne [38]
visualizations of the obtained representations on four datasets
as shown in Fig. 4. The missing rate α and unaligned rate

Fig. 3. Convergence analysis of clustering performance and loss values.

β=0.25 are also fixed to 0.25 in the experiments. As the
epoch number increases, the common representations learned
by HmiMVC become more compact and independent, and the
clustering density is higher. Even in the case of extremely
chaotic data, the boundary relationship between categories can
be found, and clustering can be completed.

C. Comparisons with State of the Arts

We evaluate all methods in Sec IV-A, where missing rate
α=0.25 (denoted by Incomplete) and β=0.25 (denoted by
Unaligned). The clustering performance of all methods on four
datasets is depicted in Table II, from which we obtain the
following observations: (1) HmiMVC is robust on different
datasets. (2) Our HmiMVC obtains the best performance on all
datasets. Compared with the second-best methods, HmiMVC
has considerable improvements, its NMI completely outper-
forms all baselines, especially on dataset Scene-15, Deep
Animal, and Caltech101. (3) The improvements obtained by
the previous SOTA method (i.e., SURE) are limited.

The reasons for the above observations can be explained
as follows: (1) The design of hierarchical consistency makes
the model more adaptable to different hierarchies of data
variations and noise, improving generalization over different
datasets. (2) HmiMVC uses hierarchic mutual information as
an optimization objective to capture the correlation between
different views, which improves the clustering performance.
(3) Compared to SURE, our HmiMVC reduces the dependence
of view alignment on view imputation, thus mitigating the
negative risk of inaccurately filled views.

D. Visualization Verification on the Validity of HmiMVC

To further verify the necessity and validity of the HmiMVC
design, we visualized the clustering results on MNIST-USPS
dataset to test the performance of all baselines under the same
experimental setup as Sec IV-C. Fig. 5 shows the results
on MNIST-USPS with different methods, from which we
could have the following observations: COMPLETER does
not form boundary-separated clusters due to the interference
of unaligned views on the original algorithm. And MvCLN
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(a) Epoch 0 (NMI = 0.193) (b) Epoch 10 (NMI = 0.247) (c) Epoch 50 (NMI = 0.331) (d) Epoch 150 (NMI = 0.395)

(e) Epoch 0 (NMI = 0.063 (f) Epoch 10 (NMI = 0.266) (g) Epoch 50 (NMI = 0.314) (h) Epoch 150 (NMI = 0.398)

(i) Epoch 0 (NMI = 0.058) (j) Epoch 10 (NMI = 0.359) (k) Epoch 50 (NMI = 0.601) (l) Epoch 150 (NMI = 0.726)

(m) Epoch 0 (NMI = 0.129) (n) Epoch 10 (NMI = 0.304) (o) Epoch 50 (NMI = 0.359) (p) Epoch 150 (NMI = 0.376)

Fig. 4. Visualization of common representations during training. In detail, the figure shows the visualization results of the representations of Scene-15 (a-d),
Deep Animal (e-h), MNIST-USPS (i-l), and Caltech101 (m-p) datasets when the epochs are 0, 10, 50, and 150, respectively.

and SURE’s formed an incorrect number of clusters, which
contained many erroneous samples. Since NMI measures the
similarity between the distribution of clustering results and
the distribution of real classes, our HmiMVC fully utilizes the
mutual information of different hierarchies to mine the consis-
tent distribution of views. HmiMVC has a clearer clustering
structure than other methods, and the number of clusters equals
the number of real labeled classes.

Additionally, we visualized the recovered images of SURE
vs. HmiMVC and found that the noise is depleted (see Fig. 6).
The potential propagation of noise or errors introduced during
the imputation process to the alignment process and informa-
tion distortion may occur during alignment. The instance-level
imputation of SURE is more helpful in accurately predicting
the missing views; the noise introduced during the imputation
process is reduced. In contrast, HmiMVC achieves algorith-
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TABLE II
THE PERFORMANCE COMPARISON ON MULTIPLE-VIEW DATASETS. THE 1st BEST RESULTS ARE INDICATED IN RED AND italic.

Incomplete Type
Datasets Sence-15 Deep Animal MNIST-USPS Caltech101
Evaluation metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

missing rate 25%
unaligned rate 25%
50% of complete data

COMPLETER [9](2021) 0.382 0.147 0.218 0.387 0.274 0.161 0.540 0.485 0.356 0.370 0.147 0.219
MvCLN [6](2021) 0.355 0.385 0.193 0.366 0.250 0.150 0.698 0.810 0.590 0.325 0.175 0.169
SURE [15](2022) 0.319 0.392 0.195 0.339 0.251 0.159 0.653 0.830 0.661 0.358 0.257 0.234
HmiMVC (Ours) 0.395 0.398 0.221 0.398 0.286 0.198 0.726 0.782 0.678 0.376 0.258 0.249
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Fig. 5. T-sne [38] visualization on the MNIST-USPS dataset with all baselines.

Fig. 6. Data recovery on noisy MNIST UPS datasets. Line 1 is the anchor
view, while Lines 2 and 3 are the SURE and HmiMVC view recovery results,
respectively.

Fig. 7. Parameter analysis of performance comparisons with different missing
rates (α) and unaligned rates (β).

mic decoupling and alleviates the dependence between the
imputation process and the alignment process, the data from
each view can better preserve their original features, thereby

reducing the likelihood of noise propagation and accumulation.

E. Model Analysis

1) Parametric Analysis: As shown in Figure 7, with the
completion rate γ being fixed at 0.5, our clustering perfor-
mance is always relatively stable no matter how α and β
vary (α + β = 0.5, α > 0, β > 0). This demonstrates
that HmiMVC is robust because class-level alignment and
instance-level recovery realize the public solution of PVP and
PSP in a unified mutual information framework.

2) Ablation experiment: We conduct the ablation study
on MNIST-USPS to demonstrate the importance of each
component of our method. As shown in Table III, all losses
play an integral role in HmiMVC. It should be pointed out that
optimizing Lcl or Lpre separately may lead to meaningless
solutions. To solve this problem, we must optimize both Lcl

and Lpre during view refactoring to avoid trivial solutions.

TABLE III
ABLATION STUDY.

moudules of HmiMVC NMI ACC ARI
(1)Lpre 0.169 0.211 0.092
(2)Lrec 0.329 0.457 0.242
(3)Lcl 0.485 0.541 0.234
(4)Lrec + Lpre 0.486 0.523 0.347
(5)Lpre + Lcl 0.539 0.607 0.413
(6)Lrec + Lcl 0.693 0.760 0.675
(7)Lrec + Lpre + Lcl 0.726 0.782 0.678

V. CONCLUSION

This paper proposes HmiMVC to provide a hierarchically
consistent framework for handling PVP and PSP. HmiMVC
achieves consistency in learning across views by maximizing
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the hierarchical mutual information and minimizing the condi-
tional entropy, bridging the gap between existing methods. To
the best of our knowledge, this is the first work that combines
class-level and instance-level alignment strategies and enables
HmiMVC to achieve state-of-the-art performance in practice
by handling PSP and PVP problems in parallel. We exper-
imentally show that our loss could mitigate or eliminate the
noise introduced during pairwise construction. This framework
trains feature extractors and predictors, which can be used in
feature compression, unsupervised labeling, and cross-modal
feature retrieval. We thus suggest that people embed our model
into the physical world to learn more consistent representation
in broad scenarios and promote data-driven decision-making.
In the future, we plan to extend this work to include more
views.
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